On a Multilevel Krylov Method for the Helmholtz Equation Preconditioned by Shifted Laplacian
نویسنده
چکیده
In Erlangga and Nabben [SIAM J. Sci. Comput., 30 (2008), pp. 1572–1595], a multilevel Krylov method is proposed to solve linear systems with symmetric and nonsymmetric matrices of coefficients. This multilevel method is based on an operator which shifts some small eigenvalues to the largest eigenvalue, leading to a spectrum which is favorable for convergence acceleration of a Krylov subspace method. This shift technique involves a subspace or coarse-grid solve. The multilevel Krylov method is obtained via a recursive application of the shift operator on the coarse-grid system. This method has been applied successfully to 2D convection-diffusion problems for which a standard multigrid method fails to converge. In this paper, we extend this multilevel Krylov method to indefinite linear systems arising from a discretization of the Helmholtz equation, preconditioned by shifted Laplacian as introduced by Erlangga, Oosterlee and Vuik [SIAM J. Sci. Comput. 27 (2006), pp. 1471–1492]. Within the Krylov iteration and the multilevel steps, for each coarse-grid solve a multigrid iteration is used to approximately invert the shifted Laplacian preconditioner. Hence, a multilevel Krylov-multigrid (MKMG) method results. Numerical results are given for high wavenumbers and show the effectiveness of the method for solving Helmholtz problems. Not only can the convergence be made almost independent of grid size h, but also linearly dependent on the wavenumber k, with a smaller proportional constant than for the multigrid preconditioned version, presented in the aforementioned paper.
منابع مشابه
Multilevel Krylov Method for the Helmholtz Equation
In the first part of the talks on multilevel Krylov methods, Reinhard Nabben discussed the underlying concept of the method and showed by some numerical examples the effectiveness of the method. In this talk, we extend the application of the multilevel Krylov method to the indefinite, high wavenumber Helmholtz equation. In this case, we consider the preconditioned Helmholtz system, where the pr...
متن کاملOn the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning
This paper studies and analyzes a preconditioned Krylov solver for Helmholtz problems that are formulated with absorbing boundary layers based on complex coordinate stretching. The preconditioner problem is a Helmholtz problem where not only the coordinates in the absorbing layer have an imaginary part, but also the coordinates in the interior region. This results into a preconditioner problem ...
متن کاملR Eduction of Computing Time for Seismic Applications Based on the H Elmholtz Equation By
A Helmholtz equation in two dimensions discretized by a second-order finite difference scheme is considered. Krylov subspace methods such as Bi-CGSTAB and IDR(s) have been chosen as solvers. Since the convergence of the Krylov solvers deteriorates with increasing wave number, a shifted Laplacian multigrid preconditioner is used to improve the convergence. The implementation of the preconditione...
متن کاملShifted-Laplacian Preconditioners for Heterogeneous Helmholtz Problems
We present an iterative solution method for the discrete high wavenumber Helmholtz equation. The basic idea of the solution method, already presented in [18], is to develop a preconditioner which is based on a Helmholtz operator with a complex-valued shift, for a Krylov subspace iterative method. The preconditioner, which can be seen as a strongly damped wave equation in Fourier space, can be a...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کامل